Results

Chapter 2

  • Theorem 2.1 \(\P \subseteq \NP \subseteq \EXP\)
  • Theorem 2.2 \(\NP = \bigcup_{c\in \mathbb{N}}\NTIME{n^c}\)
  • Theorem 2.3(Cook-Levin Theorem) \(\SAT\&3\SAT\) are \(\NP\)-complete.
    Hint: Snapshot expression
  • Theorem 2.4 \(\P = \NP \Rightarrow \text{decision = search for }L \in \NP\)
  • Theorem 2.5 \(\P = \NP \Rightarrow \EXP = \NEXP\)
    Hint: Padding

Chapter 3

  • Theorem 3.1(Time Hierarchy Theorem) \(f(n)\log f(n) = o(g(n)) \Rightarrow \DTIME{f(n)} \nsubseteq \DTIME{g(n)}\)
    Hint: Time Limit+Diagonalization
  • Theorem 3.2(Nondeterministic Time Hierarchy Theorem) \(f(n+1) = o(g(n)) \Rightarrow \NTIME{f(n)} \nsubseteq \NTIME{g(n)}\)
    Hint: Lazy Diagonalization
  • Theorem 3.3*(Ladner’s Theorem) \(\P \neq \NP \Rightarrow \NP - \P \neq \NPC\) P64
  • Oracle Machines (tbd)

Chapter 4

  • Theorem 4.1 \(\DTIME(s(n)) \subseteq \SPACE{s(n)} \subseteq \NSPACE(s(n)) \subseteq \DTIME (2^{O(s(n))})\) P72
    Hint: Configuration Graph
  • Theorem 4.2(Space Hierarchy Theorem) \(f(n) = o(g(n)) \Rightarrow \SPACE{f(n)} \nsubseteq \SPACE{g(n)}\) P75
  • Theorem 4.3(Savitch’s Theorem) \(s(n) > \log n\), \(\NSPACE{s(n)} \subseteq \SPACE{s^2(n)}\) P77 Hint: Configuration Graph+Recursion

Chapter 5

  • Theorem 5.1 \(\SIGMA{i}{p} = \PI{i}{p} \Rightarrow \PH = \SIGMA{i}{p}\) P87
  • Theorem 5.2 \(\PH\text{-complete} \neq \emptyset \Rightarrow \exists i. \PH = \SIGMA{i}{p}\)
  • Theorem 5.3 \(\AP = \PSPACE\)
  • Time Space Tradeoff (tbd)
  • Oracle Definition (tbd)

Chapter 6

  • Theorem 6.1 \(\P \subseteq \Ppoly\)
  • Theorem 6.2 \(L\) is computable by a \(\P\)-uniform circuit family \(\Leftrightarrow L \in \P\)
  • Theorem 6.3 \(L\) is computable by a \(\L\)-uniform circuit family with polynomial size \(\Leftrightarrow L \in \P\)
  • Theorem 6.4(TM with advice decides \(\Ppoly\)) \(\Ppoly = \bigcup\limits_{c,d}\DTIME{n^c}/n^d\)
    Hint: Consider Hardwiring the advice
  • Theorem 6.5(Karp-Lipton Theorem) \(\NP \subseteq \Ppoly \Rightarrow \PH = \SIGMA{2}{p}\)
    Hint: Circuit that outputs certificates
  • Theorem 6.6(Meyer’s Theorem) \(\EXP \subseteq \Ppoly \Rightarrow \EXP = \SIGMA{2}{p}\)
  • Theorem 6.7(Hard Functions) \(\exists f: \{0,1\}^{n} \rightarrow \{0,1\}\) not computable by circuit of size \(\frac{2^n}{10n}\)
    Hint: Probabilistic Method
  • Theorem 6.8(Non-uniform Hierarchy Theorem) \(2^n/n>T'(n)>10T(n)>0 \Rightarrow \SIZE{T(n)} \nsubseteq \SIZE{T'(n)}\)
  • P completeness (tbd)
  • Circuit of exponential size (tbd)

Chapter 7

  • Theorem 7.1 \(\ZPP = \RP \cap \coRP\)
  • Claim 7.2 \(\RP, \coRP \subseteq \BPP\)
  • Theorem 7.3(Error Reduction) \(\exists M. \prob{}{M(x) = L(x)} \ge \frac12 + |x|^{-c} \Rightarrow \exists M'. \prob{}{M'(x) = L(x)} \ge 1 - 2^{-|x|^d}\)
  • Theorem 7.4 \(\BPP \subseteq \Ppoly\)
  • Theorem 7.5(Sipser-Gács Theorem) \(\BPP \subseteq \SIGMA{2}{p}\cap \PI{2}{p}\) Hint: Translation of valid area

Chapter 8

  • Lemma 8.1 \(\dIP = \NP\)
  • Theorem 8.2 \(\AM[2] = \BPNP\) Exercise 8.3
  • Theorem 8.3*(Goldwasser-Sipser) \(\IP[k] \subseteq \AM[k+2]\) P134
  • Theorem 8.4 \(\IP = \PSPACE\) P139 Hint: Arithmetize TQBF
  • Theorem 8.5 \(\PSPACE \subseteq \Ppoly \Rightarrow \PSPACE = \MA\)
  • MIP (tbd)
  • Checkers (tbd)
  • IP for permant (tbd)

Chapter 9

  • Goldreich-Levin Theorem (tbd)